On the security of the keyed sponge construction

Guido Bertoni¹ Joan Daemen¹ Michaël Peeters² Gilles Van Assche¹

¹STMicroelectronics

²NXP Semiconductors

Symmetric Key Encryption Workshop (SKEW) Lyngby, Denmark, February 16-17, 2011

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Outline

- 2 Security of keyed sponges
- 3 Application to lightweight cryptography

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

4 Intuition about the proof

5 Conclusions

The sponge construction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

• *f*: a *b*-bit permutation with
$$b = r + c$$

From hashing to encryption

- Hashing: SPONGE(m) = h
- Encryption as a stream cipher
 - Squeezing Sponge(K||IV), or
 - **Random-access key stream block** $k_i = \text{SPONGE}(K||IV||i)$

- Authentication: SPONGE(K||m) = MAC
 - Note: no need for HMAC construction
- Authenticated encryption using duplex
 - First call is DUPLEX.duplexing(K)
 - Further calls are equivalent to SPONGE(K||...)

Keyed sponge functions

Keyed sponge

KeyedSponge[K](x) = sponge(K||x)

• E.g.,
$$MAC = KeyedSponge(m)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ●

Security against generic attacks

RO-differentiability advantage

- Provably secure against attacks with < 2^{c/2} calls to f [Bertoni et al., Eurocrypt 2008]
- Proof assumes f is a random permutation
- So, SPONGE is secure if *f* has no exploitable properties

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

And for KEYEDSPONGE...

- Proof currently limited to 2^{c/2}
 - Can we go beyond?

Indistinguishability setting

- M: online data complexity (blocks)
 - Calls to KEYEDSPONGE[K] with unknown key K, or to \mathcal{RO}
- N: offline time complexity (calls to f)
 - Not involving the key

Indistinguishability theorem

Distinguishability upper bound

$$1 - \exp\left(-\frac{M^2/2 + 2MN}{2^c}\right) + P_{key}(N)$$

*P*_{key}(*N*): probability of guessing the key after *N* calls to *f* i.e., of making a query to *f* with input in absorb(*K*)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

If $M \ll 2^{c/2}$

Time complexity is about $\min(2^{c-1}/M, 2^{|K|})$

Limited data complexity

If the (online) data complexity is limited to M ≤ 2^a
... by the protocol, by the secure device ...

- And the capacity is $c \ge |K| + a + 1$
- Then we get the security of the exhaustive key search

$$\min(2^{c-1}/M, 2^{|K|}) = 2^{|K|}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

The new bound, illustrated

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Application to lightweight cryptography

Building lightweight implementations

Trade-off between security and efficiency

- Security level determined by c
- Efficiency: r input/output bits per call to f
- Example 1: QUARK [Aumasson et al., QUARK, ..., CHES 2010]

u-Quark	<i>r</i> = 8	c = 128
d-Quark	<i>r</i> = 16	c = 160
s-Quark	<i>r</i> = 32	c = 224

- Example 2: KECCAK supports : $b \in \{25, 50, 100 \dots 1600\}$
 - E.g., KECCAK[r = 40, c = 160] is compact in hardware [Bertoni et al., KECCAK implementation overview]

Application to lightweight cryptography

Building implementations that are even lighter

Target example: 80-bit key with QUARK

• New bound: U-QUARK (
$$r = 8, c = 128$$
)

with data complexity restricted to 2⁴⁷ blocks

Intuition about the proof

If the distinguisher had no access to f...

Only distinguishing property: the inner collisions (M²/2^c)
No access to *f*: not very realistic...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

[Bertoni et al., Sponge functions, 2007]

Intuition about the proof

No inner clashes, please

- Inner collisions in keyed sponge (M²/2^c)
- Uniformity if no inner clash with queries to $f(MN/2^c)$
 - Key guessing implies an inner clash

Conclusions

Conclusions

Thanks for your attention!

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ